pnpl.datasets.hdf5.dataset.HDF5Dataset#
- class pnpl.datasets.hdf5.dataset.HDF5Dataset(data_path, preprocessing_name=None, tmin=-0.2, tmax=0.6, sfreq=None, subjects=[], sessions=[None], tasks=[None], runs=[None], include_info=False, standardize=True, clipping_factor=None, channel_means=None, channel_stds=None)[source]#
Torch Dataset for Serialized hdf5 files. Please implement get_phonemes method in the subclass.
- Parameters:
data_path (str)
preprocessing_name (str | None)
tmin (float)
tmax (float)
sfreq (float | None)
subjects (list[str])
sessions (list[str | None])
tasks (list[str | None])
runs (list[str | None])
include_info (bool)
standardize (bool)
clipping_factor (float | None)
channel_means (ndarray | None)
channel_stds (ndarray | None)
- __init__(data_path, preprocessing_name=None, tmin=-0.2, tmax=0.6, sfreq=None, subjects=[], sessions=[None], tasks=[None], runs=[None], include_info=False, standardize=True, clipping_factor=None, channel_means=None, channel_stds=None)[source]#
data_path: path to serialized dataset. include: Subjects to load (e.g. [‘010002’, ‘010047’]). If empty load all partition: train, val, or test
- #included_files_dict: dictionary to indicate which files to load.
Keys are subjects and values are sessions. If empty, load all.
standardize: If True, standardize the data. Calculate means and stds if not provided.
- Parameters:
data_path (str)
preprocessing_name (str | None)
tmin (float)
tmax (float)
sfreq (float | None)
subjects (list[str])
sessions (list[str | None])
tasks (list[str | None])
runs (list[str | None])
include_info (bool)
standardize (bool)
clipping_factor (float | None)
channel_means (ndarray | None)
channel_stds (ndarray | None)
Methods
__init__(data_path[, preprocessing_name, ...])data_path: path to serialized dataset.
get_phonemes(subject, session, task, run)