LibriBrain#
The LibriBrain 2025 datasets provide MEG-based tasks with convenient download and caching from Hugging Face.
Common Arguments#
data_path: local root where files are stored / downloadedpreprocessing_str: expected preprocessing string in filenamestmin,tmax: window relative to event (seconds)standardize: z-score channels using per-run statsinclude_run_keys: list of run keys to include (see constants.RUN_KEYS)include_info: include an info dict in each sampledownload: if True (default), fetch missing files via Hugging Face
Speech (binary time series)#
from pnpl.datasets import LibriBrainSpeech
from pnpl.datasets.libribrain2025 import constants
ds = LibriBrainSpeech(
data_path="./data/LibriBrain",
preprocessing_str="bads+headpos+sss+notch+bp+ds",
include_run_keys=[constants.RUN_KEYS[0]],
tmin=0.0,
tmax=0.2,
include_info=True,
)
print(len(ds))
Each item returns (data: float32[channels,time], labels: int[time], info: dict).
Phoneme (classification)#
from pnpl.datasets import LibriBrainPhoneme
from pnpl.datasets.libribrain2025 import constants
ds = LibriBrainPhoneme(
data_path="./data/LibriBrain",
preprocessing_str="bads+headpos+sss+notch+bp+ds",
include_run_keys=[constants.RUN_KEYS[0]],
tmin=-0.2,
tmax=0.6,
)
print(len(ds))
Each item returns (data: float32[channels,time], label_id: int64).